设为首页 收藏本站
查看: 1269|回复: 0

[经验分享] Spark笔记整理(二):RDD与spark核心概念名词

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2019-1-30 10:28:02 | 显示全部楼层 |阅读模式
  [TOC]

Spark RDD
  非常基本的说明,下面一张图就能够有基本的理解:


Spark RDD基本说明
  1、Spark的核心概念是RDD (resilient distributed dataset,弹性分布式数据集),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用。
  2、RDD在抽象上来说是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同Worker节点上,从而让RDD中的数据可以被并行操作。(分布式数据集)
  3、RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建;有时也可以通过RDD的本地创建转换而来。
  4、传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大量的磁盘IO操作(每跑完一个Job,拿到其中间结果后,再跑下一个Job,联想使用MR做数据清洗的案例)。RDD正是解决这一缺点的抽象方法。RDD最重要的特性就是,提供了容错性,可以自动从节点失败中恢复过来。即如果某个节点上的RDD partition,因为节点故障,导致数据丢了,那么RDD会自动通过自己的数据来源重新计算该partition。这一切对使用者是透明的。RDD的lineage特性(类似于族谱,像上面的图,假如某个partition的数据丢失了,找到其父partition重新计算即可,我称之为溯源)。
  5、RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。(弹性)

RDD在Spark中的地位和作用
  (1)为什么会有Spark?因为传统的并行计算模型无法有效的解决迭代计算(iterative)和交互式计算(interactive);而Spark的使命便是解决这两个问题,这也是他存在的价值和理由。
  (2)Spark如何解决迭代计算?其主要实现思想就是RDD,把所有计算的数据保存在分布式的内存中。迭代计算通常情况下都是对同一个数据集做反复的迭代计算,数据在内存中将大大提升IO操作。这也是Spark涉及的核心:内存计算。(一行搞定wc:sc.textFile("./hello").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect.foreach(println),这就是典型的迭代计算了)
  (3)Spark如何实现交互式计算?因为Spark是用scala语言实现的,Spark和scala能够紧密的集成,所以Spark可以完美的运用scala的解释器,使得其中的scala可以向操作本地集合对象一样轻松操作分布式数据集。
  (4)Spark和RDD的关系?可以理解为:RDD是一种具有容错性基于内存的集群计算抽象方法,Spark则是这个抽象方法的实现。

Spark常用核心模块

1、核心模块开发:离线批处理 Spark Core
2、实时计算:底层也是基于RDD Spark Streaming
3、Spark SQL/Hive:交互式分析
4、Spark Graphx:图计算
5、Spark Mlib: 数据挖掘和机器学习
核心概念名词

  大多数应该都要实地写过spark程序和提交任务到spark集群后才有更好的理解。



  • ClusterManager:在Standalone模式中即为Master(主节点),控制整个集群,监控Worker。在YARN模式中为资源管理器。
  • Worker:从节点,负责控制计算节点,启动Executor。在YARN模式中为NodeManager,负责计算节点的控制。
  • Driver:运行Application的main()函数并创建SparkContext。
  • Executor:执行器,在worker node上执行任务的组件、用于启动线程池运行任务。每个Application拥有独立的一组Executors。
  • SparkContext:整个应用的上下文,控制应用的生命周期。
  • RDD:Spark的基本计算单元,一组RDD可形成执行的有向无环图RDD Graph。
  • DAG Scheduler:实现将Spark作业分解成一到多个Stage,每个Stage根据RDD的Partition个数决定Task的个数,然后生成相应的Task set放到TaskScheduler中。
  • TaskScheduler:将任务(Task)分发给Executor执行。(所以Executor执行的就是我们的代码)
  • Stage:一个Spark作业一般包含一到多个Stage。
  • Task:一个Stage包含一到多个Task,通过多个Task实现并行运行的功能。
  • Transformations:转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。(后面的wc例子就会有很好的说明)
  • Actions:操作(Actions) (如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。
  • SparkEnv:线程级别的上下文,存储运行时的重要组件的引用。SparkEnv内创建并包含如下一些重要组件的引用。

    • MapOutPutTracker:负责Shuffle元信息的存储。
    • BroadcastManager:负责广播变量的控制与元信息的存储。
    • BlockManager:负责存储管理、创建和查找块。
    • MetricsSystem:监控运行时性能指标信息。
    • SparkConf:负责存储配置信息。





运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-669499-1-1.html 上篇帖子: spark的宽依赖窄依赖 下篇帖子: 8.spark core之读写数据
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表