设为首页 收藏本站
查看: 1334|回复: 0

[经验分享] Spark随谈

[复制链接]

尚未签到

发表于 2019-1-30 10:42:37 | 显示全部楼层 |阅读模式
  Spark是一个由加州大学伯克利分校(UCBerkeleyAMP)开发的一个分布式数据快速分析项目。它的核心技术是弹性分布式数据集(Resilientdistributeddatasets),提供了比Hadoop更加丰富的MapReduce模型,可以快速在内存中对数据集进行多次迭代,来支持复杂的数据挖掘算法和图计算算法。
  Spark使用Scala开发,使用Mesos作为底层的调度框架,可以和hadoop和Ec2紧密集成,直接读取hdfs或S3的文件进行计算,并把结果写回hdfs或S3,是Hadoop和Amazon云计算生态圈的一部分。
  Spark的第一个版本是2011年5月份发布,到如今已经1年。去年下半年有段时间国内比较活跃,豆瓣基于它克隆了一个DPark,但是不支持hdfs的读取,后来又沉寂下去。原因之一是0.4版本的Spark,基于的mesos版本太低,稳定性不足,而本身也尚未成熟,一旦部署会发现颇多问题。经过半年的开发者不断努力,昨天(6月12日)发布的0.5.0正式版本,有了不小的提升,而且基于的mesos版本也升级为0.9正式版,稳定性可以支持生产级别。
  有鉴于此,开始将最近研究的一些心得,分成几个随谈系列发布,希望对Spark在业界的应用,有良好的促进作用,为基于大数据的快速数据挖掘,提供多一种优秀的解决方案。
  随谈分成6个部分
  一、总体框架
  二、安装攻略
  三、开发指南
  四、寻找Scala语法糖
  五、核心RDD模型之妙
  六、链式MapReduce模型的挖掘算法
  参考网址:
  http://www.spark-project.org/




运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-669516-1-1.html 上篇帖子: Spark简介 下篇帖子: Spark Streaming Demo
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表