Simplified Parallelism: No need to create multiple input Kafka streams and union-ing them. With directStream, Spark Streaming will create as many RDD partitions as there is Kafka partitions to consume, which will all read data from Kafka in parallel. So there is one-to-one mapping between Kafka and RDD partitions, which is easier to understand and tune.
Efficiency: Achieving zero-data loss in the first approach required the data to be stored in a Write Ahead Log, which further replicated the data. This is actually inefficient as the data effectively gets replicated twice - once by Kafka, and a second time by the Write Ahead Log. This second approach eliminate the problem as there is no receiver, and hence no need for Write Ahead Logs.
Exactly-once semantics: The first approach uses Kafka’s high level API to store consumed offsets in Zookeeper. This is traditionally the way to consume data from Kafka. While this approach (in combination with write ahead logs) can ensure zero data loss (i.e. at-least once semantics), there is a small chance some records may get consumed twice under some failures. This occurs because of inconsistencies between data reliably received by Spark Streaming and offsets tracked by Zookeeper. Hence, in this second approach, we use simple Kafka API that does not use Zookeeper and offsets tracked only by Spark Streaming within its checkpoints. This eliminates inconsistencies between Spark Streaming and Zookeeper/Kafka, and so each record is received by Spark Streaming effectively exactly once despite failures.
Note that one disadvantage of this approach is that it does not update offsets in Zookeeper, hence Zookeeper-based Kafka monitoring tools will not show progress. However, you can access the offsets processed by this approach in each batch and update Zookeeper yourself .
/**
* :: Experimental ::
* Create an input stream that directly pulls messages from Kafka Brokers
* without using any receiver. This stream can guarantee that each message
* from Kafka is included in transformations exactly once (see points below).
*
* Points to note:
* - No receivers: This stream does not use any receiver. It directly queries Kafka
* - Offsets: This does not use Zookeeper to store offsets. The consumed offsets are tracked
* by the stream itself. For interoperability with Kafka monitoring tools that depend on
* Zookeeper, you have to update Kafka/Zookeeper yourself from the streaming application.
* You can access the offsets used in each batch from the generated RDDs (see
* `org`.`apache`.`spark`.`streaming`.`kafka`.`HasOffsetRanges`).
* - Failure Recovery: To recover from driver failures, you have to enable checkpointing
* in the `StreamingContext`. The information on consumed offset can be
* recovered from the checkpoint. See the programming guide for details (constraints, etc.).
* - End-to-end semantics: This stream ensures that every records is effectively received and
* transformed exactly once, but gives no guarantees on whether the transformed data are
* outputted exactly once. For end-to-end exactly-once semantics, you have to either ensure
* that the output operation is idempotent, or use transactions to output records atomically.
* See the programming guide for more details.
*
* @param ssc StreamingContext object
* @param kafkaParams Kafka
* configuration parameters. Requires "metadata.broker.list" or "bootstrap.servers"
* to be set with Kafka broker(s) (NOT zookeeper servers) specified in
* host1:port1,host2:port2 form.
* @param fromOffsets Per-topic/partition Kafka offsets defining the (inclusive)
* starting point of the stream
* @param messageHandler Function for translating each message and metadata into the desired type
*/
@Experimental
def createDirectStream[
K: ClassTag,
V: ClassTag,
KD