设为首页 收藏本站
查看: 867|回复: 0

[经验分享] 个推 Spark实践教你绕过开发那些“坑”

[复制链接]

尚未签到

发表于 2019-1-30 14:07:15 | 显示全部楼层 |阅读模式
  Spark作为一个开源数据处理框架,它在数据计算过程中把中间数据直接缓存到内存里,能大大地提高处理速度,特别是复杂的迭代计算。Spark主要包括SparkSQL,SparkStreaming,Spark MLLib以及图计算。

Spark核心概念简介
  1、RDD即弹性分布式数据集,通过RDD可以执行各种算子实现数据处理和计算。比如用Spark做统计词频,即拿到一串文字进行WordCount,可以把这个文字数据load到RDD之后,调用map、reducebyKey 算子,最后执行count动作触发真正的计算。
  2、宽依赖和窄依赖。工厂里面有很多流水线,一款产品上游有一个人操作,下游有人进行第二个操作,窄依赖和这个很类似,下游依赖上游。而所谓宽依赖类似于有多条流水线,A流水线的一个操作是需要依赖一条流水线B,才可以继续执行,要求两条流水线之间要做材料运输,做协调,但效率低。

从上图可以看到,如果B只依赖A则是一种窄依赖。像图中这种reduceByKey的操作,就是刚刚举例的宽依赖,类似于多条流水线之间某一些操作相互依赖,如:F对E、B的依赖。宽依赖最大的问题是会导致洗牌过程。
  Spark Streaming介绍
  流式计算,即数据生成后,实时对数据进行处理。Spark 是一个批处理框架,那它如何实现流式处理?Spark 是把数据裁成一段一段的处理,即一个数据流离散化成许多个连续批次,然后Spark对每个批次进行处理。

  个推为什么选择Spark?
  1、Spark 比较适合迭代计算,解决我们团队在之前使用hadoop mapreduce迭代数据计算这一块的瓶颈。
  2、Spark是一个技术栈,但可以做很多类型的数据处理:批处理,SQL,流式处理以及ML等,基本满足我们团队当时的诉求。
  3、它的API抽象层次非常高,通过使用map、reduce、groupby等多种算子可快速实现数据处理,极大降低开发成本,并且灵活。另外Spark框架对于多语言支持也是非常好,很多负责数据挖掘算法同学对于python 熟悉,而工程开发的同学熟悉java, 多语言支持可以把开发和分析的同学快速地引入过来。
  4、在2014年的时候,我们用hadoop Yarn,而Spark可以在Yarn部署起来,使用Spark大大降低了切换成本,并且可以把之前的hadoop资源利用起来。
  5、Spark在社区很火,找资料非常方便。
  个推数据处理架构

上图是一个典型的lambda架构。主要分三层。上面蓝色的框,是做离线批量处理,下面一层是实时数据处理这一块,中间这一层是对于结果数据做一些存储和检索。
  有两种方式导入数据到HDFS,一部分数据从业务平台日志收集写入到 Kafka,然后直接Linkedin Camus(我们做过扩展) 准实时地传输到 HDFS,另外部分数通过运维那边的脚本定时导入到 HDFS 上。
  离线处理部分我们还是使用两个方式(Hadoop MR 和 Spark)。原有的hadoop MR没有放弃掉, 因为原来很多的工程已经是用MR做的了,非常稳定,没有必要推倒重来,只有部分迭代任务使用Spark 重新实现。另外Hive是直接可以跟Spark做结合,Spark Sql中就可以使用Hive的命令。
  个推Spark集群的部署状况
  个推最开始用Spark是1.3.1版本,用的是刀片服务器,就是刀框里面可以塞 16 个刀片服务器,单个内存大小192G, CPU 核数是24 核的。在Spark官方也推荐用万兆网卡,大内存设备。我们权衡了需求和成本后,选择了就用刀片机器来搭建 Spark集群。刀框有个好处就是通过背板把刀片机器连接起来,传输速度快,相对成本小。部署模式上采用的是 Spark on Yarn,实现资源复用。
  Spark 在个推业务上的具体使用现状
  1、个推做用户画像、模型迭代以及一些推荐的时候直接用了MLLib,MLLib集成了很多算法,非常方便。
  2、个推有一个BI工具箱,让一些运营人员提取数据,我们是用Spark SQL+Parquet格式宽表实现,Parquet是列式存储格式,使用它你不用加载整个表,只会去加载关心那些字段,大大减少IO消耗。
  3、实时统计分析这块:例如个推有款产品叫个图,就是使用Spark streaming 来实时统计。
  4、复杂的 ETL 任务我们也使用 Spark。例如:我们个推推送报表这一块,每天需要做很多维度的推送报表统计。使用 Spark 通过 cache 中间结果缓存,然后再统计其他维度,大大地减少了 I/O 消耗,显著地提升了统计处理速度。
  个推Spark实践案例分享

上图是个推热力图的处理架构。左边这一侧利用业务平台得到设备的实时位置数据,通过Spark Streaming以及计算得到每一个geohash格子上的人数,然后统计结果实时传输给业务服务层,在push到客户端地图上面去渲染,最终形成一个实时热力图。Spark Streaming 主要用于数据实时统计处理上。
  个推教你绕过开发那些坑
  1、数据处理经常出现数据倾斜,导致负载不均衡的问题,需要做统计分析找到倾斜数据特征,定散列策略。
  2、使用Parquet列式存储,减少IO,提高Spark SQL效率。
  3、实时处理方面:一方面要注意数据源(Kafka)topic需要多个partition,并且数据要散列均匀,使得Spark Streaming的Recevier能够多个并行,并且均衡地消费数据 。使用Spark Streaming,要多通过Spark History 排查DStream的操作中哪些处理慢,然后进行优化。另外一方面我们自己还做了实时处理的监控系统,用来监控处理情况如流 入、流出数据速度等。通过监控系统报警,能够方便地运维Spark Streaming 实时处理程序。这个小监控系统主要用了 influxdb+grafana 等实现。
  4、我们测试网经常出现找不到第三方jar的情况,如果是用CDH的同学一般会遇到,就是在CDH 5.4开始,CDH的技术支持人员说他们去掉了hbase等一些jar,他们认那些jar已经不需要耦合在自己的classpath中,这个情况可以通过spark.executor.extraClassPath方式添加进来。
  5、一些新入门的人会遇到搞不清transform和action,没有明白transform是lazy的,需要action触发,并且两个action前后调用效果可能不一样。
  6、大家使用过程当中,对需要重复使用的RDD,一定要做cache,性能提升会很明显。
  以上内容根据个推讲师袁凯在11月28号Segmentfault北京D-Day沙龙的分享整理,希望给广大开发者一些启示。小伙伴们记得将get到的干货顺手分享给身边的同学们哦~




运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-669696-1-1.html 上篇帖子: Spark Streaming笔记整理(一):基本工作原理介绍 下篇帖子: 大数据spark计算引擎快速入门
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表