设为首页 收藏本站
查看: 1243|回复: 0

[经验分享] MongoDB MapReduce学习笔记

[复制链接]

尚未签到

发表于 2015-7-6 07:03:47 | 显示全部楼层 |阅读模式
  MapReduce应该算是MongoDB操作中比较复杂的了,自己开始理解的时候还是动了动脑子的,所以记录在此!
  命令语法:详细看



db.runCommand(
{ mapreduce : 字符串,集合名,
map : 函数,见下文
reduce : 函数,见下文
[, query : 文档,发往map函数前先给过渡文档]
[, sort : 文档,发往map函数前先给文档排序]
[, limit : 整数,发往map函数的文档数量上限]
[, out : 字符串,统计结果保存的集合]
[, keeptemp: 布尔值,链接关闭时临时结果集合是否保存]
[, finalize : 函数,将reduce的结果送给这个函数,做最后的处理]
[, scope : 文档,js代码中要用到的变量]
[, jsMode : 布尔值,是否减少执行过程中BSON和JS的转换,默认true] //注:false时 BSON-->JS-->map-->BSON-->JS-->reduce-->BSON,可处理非常大的mapreduce,
                                    //true时BSON-->js-->map-->reduce-->BSON
[, verbose : 布尔值,是否产生更加详细的服务器日志,默认true]
}
);

  测试数据:
DSC0000.jpg
  现在我要统计同一age的name,也就是像如下的结果:



{age:0,names:["name_6","name_12","name_18"]}
{age:1,names:["name_1","name_7","name_13","name_19"]}
......
  第一步是写映射(Map)函数,可以简单的理解成分组吧~



var m=function(){
    emit(this.age,this.name);
}
  emit的第一个参数是key,就是分组的依据,这是自然是age了,后一个是value,可以是要统计的数据,下面会说明,value可以是JSON对象。
这样m就会把送过来的数据根据key分组了,可以想象成如下结构:



第一组
{key:0,values: ["name_6","name_12","name_18"]
第二组
{key:1,values: ["name_1","name_7","name_13","name_19"]
......
  组中的key其实就是age的值了,values是个数组,数组内的成员都有相同的age!!。
  第二步就是简化了,编写reduce函数:



var r=function(key,values){
    var ret={age:key,names:values};
    return ret;
}
  reduce函数会处理每一个分组,参数也正好是我们想像分组里的key和values。
  这里reduce函数只是简单的把key和values包装了一下,因为不用怎么处理就是我们想要的结果了,然后返回一个对象。对象结构正好和我们想象的相符!:



{age:对应的age,names:[名字1,名字2..]}
  最后,还可以编写finalize函数对reduce的返回值做最后处理:



var f=function(key,rval){
    if(key==0){
        rval.msg="a new life,baby!";
    }
    return rval
}
  这里的key还是上面的key,也就是还是age,rval是reduce的返回值,所以rval的一个实例如:{age:0,names:["name_6","name_12","name_18"]},
  这里判断 key 是不是 0 ,如果是而在 rval 对象上加 msg 属性,显然也可以判断 rval.age==0,因为 key 和 rval.age 是相等的嘛!!
  这里其他的选项就不说了,一看就知道。
  运行:



db.runCommand({
    mapreduce:"t",
    map:m,
    reduce:r,
    finalize:f,
    out:"t_age_names"
    }
)
DSC0001.jpg
  结果导入到 t_age_names 集合中,查询出来正是我想要的结果,看一下文档的结构,不难发现,_id 就是 key,value 就是处理后的返回值。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-83518-1-1.html 上篇帖子: MongoDB 1.6.1发布 下篇帖子: MongoDB Windows 下安装部署
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表