|
参考文献:http://www.hadooper.cn/dct/page/65778
1.概述
RandomWriter(随机写)例子利用 Map/Reduce把 数据随机的写到dfs中。每个map输入单个文件名,然后随机写BytesWritable的键和值到DFS顺序文件。map没有产生任何输出,所以reduce没有执行。产生的数据是可以配置的。配置变量如下
名字 |
默认值 |
描述 | test.randomwriter.maps_per_host
|
10 |
每个节点运行的map任务数 | test.randomwrite.bytes_per_map
|
1073741824 |
每个map任务产生的数据量 | test.randomwrite.min_key
|
10 |
minimum size of the key in bytes | test.randomwrite.max_key
|
1000 |
maximum size of the key in bytes | test.randomwrite.min_value
|
0 |
minimum size of the value | test.randomwrite.max_value
|
20000 |
maximum size of the value |
test.randomwriter.maps_per_host表示每个工作节点(datanode)上运行map的次数。默认情况下,只有一个数据节点,那么就有10个map,每个map的数据量为1G,因此要将10G数据写入到hdfs中。我配置的试验环境中只有2个工作节点,不过我希望每个工作节点只有1个map任务。
test.randomwrite.bytes_per_map我原本以为是随机写输出的测试文件的大小,默认为1G=1*1024*1024*1024,但是我将这个数据改成1*1024*1024以后,输出的测试文件还是1G,这让我很不解。(PS:2011-11-2,今天知道这个参数表示没个map任务产生的数据量,如果将其改为1*1024*1024,那么就表示没个map任务产生的数据量为1MB。)(PS:2011-11-3,修改参数test.randomwrite.bytes_per_map并不能更改每个map任务产生的数据量,还是1G,不管我将这个参数设定为什么值。不过修改参数:test.randomwriter.maps_per_host是有效的。测试发现将该参数设为1和2都测试通过。问题:在哪里修改test.randomwrite.bytes_per_map才能真正修改map任务产生的数据量。!)
2.代码实例
其中test.randomwrite.bytes_per_map=1*1024*1024,test.randomwriter.maps_per_host=1。
/*** Licensed to the Apache Software Foundation (ASF) under one* or more contributor license agreements. See the NOTICE file* distributed with this work for additional information* regarding copyright ownership. The ASF licenses this file* to you under the Apache License, Version 2.0 (the* "License"); you may not use this file except in compliance* with the License. You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.*/package org.apache.hadoop.examples;import java.io.IOException;import java.util.Date;import java.util.Random;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.BytesWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.Writable;import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.mapred.ClusterStatus;import org.apache.hadoop.mapred.FileOutputFormat;import org.apache.hadoop.mapred.FileSplit;import org.apache.hadoop.mapred.InputFormat;import org.apache.hadoop.mapred.InputSplit;import org.apache.hadoop.mapred.JobClient;import org.apache.hadoop.mapred.JobConf;import org.apache.hadoop.mapred.MapReduceBase;import org.apache.hadoop.mapred.Mapper;import org.apache.hadoop.mapred.OutputCollector;import org.apache.hadoop.mapred.RecordReader;import org.apache.hadoop.mapred.Reporter;import org.apache.hadoop.mapred.SequenceFileOutputFormat;import org.apache.hadoop.mapred.lib.IdentityReducer;import org.apache.hadoop.util.GenericOptionsParser;import org.apache.hadoop.util.Tool;import org.apache.hadoop.util.ToolRunner;/*** This program uses map/reduce to just run a distributed job where there is* no interaction between the tasks and each task write a large unsorted* random binary sequence file of BytesWritable.* In order for this program to generate data for terasort with 10-byte keys* and 90-byte values, have the following config:* * * * * * test.randomwrite.min_key* 10* * * test.randomwrite.max_key* 10* * * test.randomwrite.min_value* 90* * * test.randomwrite.max_value* 90* * * test.randomwrite.total_bytes* 1099511627776* * * * Equivalently, {@link RandomWriter} also supports all the above options* and ones supported by {@link GenericOptionsParser} via the command-line.*/public class RandomWriter extends Configured implements Tool {/*** User counters*/static enum Counters { RECORDS_WRITTEN, BYTES_WRITTEN }/*** A custom input format that creates virtual inputs of a single string* for each map.*/static class RandomInputFormat implements InputFormat {/** * Generate the requested number of file splits, with the filename* set to the filename of the output file.*/public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {InputSplit[] result = new InputSplit[numSplits];Path outDir = FileOutputFormat.getOutputPath(job);for(int i=0; i < result.length; ++i) {result = new FileSplit(new Path(outDir, "dummy-split-" + i), 0, 1, (String[])null);}return result;}/*** Return a single record (filename, "") where the filename is taken from* the file split.*/static class RandomRecordReader implements RecordReader {Path name;public RandomRecordReader(Path p) {name = p;}public boolean next(Text key, Text value) {if (name != null) {key.set(name.getName());name = null;return true;}return false;}public Text createKey() {return new Text();}public Text createValue() {return new Text();}public long getPos() {return 0;}public void close() {}public float getProgress() {return 0.0f;}}public RecordReader getRecordReader(InputSplit split,JobConf job, Reporter reporter) throws IOException {return new RandomRecordReader(((FileSplit) split).getPath());}}static class Map extends MapReduceBaseimplements Mapper {private long numBytesToWrite;private int minKeySize;private int keySizeRange;private int minValueSize;private int valueSizeRange;private Random random = new Random();private BytesWritable randomKey = new BytesWritable();private BytesWritable randomValue = new BytesWritable();private void randomizeBytes(byte[] data, int offset, int length) {for(int i=offset + length - 1; i >= offset; --i) {data = (byte) random.nextInt(256);}}/*** Given an output filename, write a bunch of random records to it.*/public void map(WritableComparable key, Writable value,OutputCollector output, Reporter reporter) throws IOException {int itemCount = 0;while (numBytesToWrite > 0) {int keyLength = minKeySize + (keySizeRange != 0 ? random.nextInt(keySizeRange) : 0);randomKey.setSize(keyLength);randomizeBytes(randomKey.getBytes(), 0, randomKey.getLength());int valueLength = minValueSize +(valueSizeRange != 0 ? random.nextInt(valueSizeRange) : 0);randomValue.setSize(valueLength);randomizeBytes(randomValue.getBytes(), 0, randomValue.getLength());output.collect(randomKey, randomValue);numBytesToWrite -= keyLength + valueLength;reporter.incrCounter(Counters.BYTES_WRITTEN, keyLength + valueLength);reporter.incrCounter(Counters.RECORDS_WRITTEN, 1);if (++itemCount % 200 == 0) {reporter.setStatus("wrote record " + itemCount + ". " + numBytesToWrite + " bytes left.");}}reporter.setStatus("done with " + itemCount + " records.");}/*** Save the values out of the configuaration that we need to write* the data.*/@Overridepublic void configure(JobConf job) {numBytesToWrite = job.getLong("test.randomwrite.bytes_per_map",1*1024*1024);minKeySize = job.getInt("test.randomwrite.min_key", 10);keySizeRange = job.getInt("test.randomwrite.max_key", 1000) - minKeySize;minValueSize = job.getInt("test.randomwrite.min_value", 0);valueSizeRange = job.getInt("test.randomwrite.max_value", 20000) - minValueSize;}}/*** This is the main routine for launching a distributed random write job.* It runs 10 maps/node and each node writes 1 gig of data to a DFS file.* The reduce doesn't do anything.* * @throws IOException */public int run(String[] args) throws Exception { if (args.length == 0) {System.out.println("Usage: writer ");ToolRunner.printGenericCommandUsage(System.out);return -1;}Path outDir = new Path(args[0]);JobConf job = new JobConf(getConf());job.setJarByClass(RandomWriter.class);job.setJobName("random-writer");FileOutputFormat.setOutputPath(job, outDir);job.setOutputKeyClass(BytesWritable.class);job.setOutputValueClass(BytesWritable.class);job.setInputFormat(RandomInputFormat.class);job.setMapperClass(Map.class); job.setReducerClass(IdentityReducer.class);job.setOutputFormat(SequenceFileOutputFormat.class);JobClient client = new JobClient(job);ClusterStatus cluster = client.getClusterStatus();int numMapsPerHost = job.getInt("test.randomwriter.maps_per_host", 1);long numBytesToWritePerMap = job.getLong("test.randomwrite.bytes_per_map",1*1024*1024);if (numBytesToWritePerMap == 0) {System.err.println("Cannot have test.randomwrite.bytes_per_map set to 0");return -2;}long totalBytesToWrite = job.getLong("test.randomwrite.total_bytes", numMapsPerHost*numBytesToWritePerMap*cluster.getTaskTrackers());int numMaps = (int) (totalBytesToWrite / numBytesToWritePerMap);if (numMaps == 0 && totalBytesToWrite > 0) {numMaps = 1;job.setLong("test.randomwrite.bytes_per_map", totalBytesToWrite);}job.setNumMapTasks(numMaps);System.out.println("Running " + numMaps + " maps.");// reducer NONEjob.setNumReduceTasks(0);Date startTime = new Date();System.out.println("Job started: " + startTime);JobClient.runJob(job);Date endTime = new Date();System.out.println("Job ended: " + endTime);System.out.println("The job took " + (endTime.getTime() - startTime.getTime()) /1000 + " seconds.");return 0;}public static void main(String[] args) throws Exception {int res = ToolRunner.run(new Configuration(), new RandomWriter(), args);System.exit(res);}}输出信息:
11/10/17 13:27:46 WARN conf.Configuration: DEPRECATED: hadoop-site.xml found in the classpath. Usage of hadoop-site.xml is deprecated. Instead use core-site.xml, mapred-site.xml and hdfs-site.xml to override properties of core-default.xml, mapred-default.xml and hdfs-default.xml respectivelyRunning 2 maps.Job started: Mon Oct 17 13:27:47 CST 201111/10/17 13:27:47 INFO mapred.JobClient: Running job: job_201110171322_000111/10/17 13:27:48 INFO mapred.JobClient: map 0% reduce 0%11/10/17 13:29:58 INFO mapred.JobClient: map 50% reduce 0%11/10/17 13:30:05 INFO mapred.JobClient: map 100% reduce 0%11/10/17 13:30:07 INFO mapred.JobClient: Job complete: job_201110171322_000111/10/17 13:30:07 INFO mapred.JobClient: Counters: 811/10/17 13:30:07 INFO mapred.JobClient: Job Counters 11/10/17 13:30:07 INFO mapred.JobClient: Launched map tasks=311/10/17 13:30:07 INFO mapred.JobClient: org.apache.hadoop.examples.RandomWriter$Counters11/10/17 13:30:07 INFO mapred.JobClient: BYTES_WRITTEN=214750407811/10/17 13:30:07 INFO mapred.JobClient: RECORDS_WRITTEN=20452811/10/17 13:30:07 INFO mapred.JobClient: FileSystemCounters11/10/17 13:30:07 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=215458031811/10/17 13:30:07 INFO mapred.JobClient: Map-Reduce Framework11/10/17 13:30:07 INFO mapred.JobClient: Map input records=211/10/17 13:30:07 INFO mapred.JobClient: Spilled Records=011/10/17 13:30:07 INFO mapred.JobClient: Map input bytes=011/10/17 13:30:07 INFO mapred.JobClient: Map output records=204528Job ended: Mon Oct 17 13:30:07 CST 2011The job took 140 seconds.在hdfs上产生了两个文件,在/home/hadoop/rand目录下,分别是part-00000(1Gb,r3)和part-00001(1Gb,r3)
|
|