设为首页 收藏本站
查看: 761|回复: 0

[经验分享] Hadoop实战之四~hadoop作业调度详解(2)

[复制链接]

尚未签到

发表于 2015-7-11 11:47:05 | 显示全部楼层 |阅读模式
  这篇文章将接着上一篇wordcount的例子,抽象出最简单的过程,一探MapReduce的运算过程中,其系统调度到底是如何运作的。
  
情况一:数据和运算分开的情况
  wordcount这个例子的是hadoop的helloworld程序,作用就是统计每个单词出现的次数而已。其过程是:
DSC0000.png
  现在我用文字再来描述下这个过程。
  1  Client提交一个作业,将Mapreduce程序和数据到HDFS中
  2  发起作业,Hadoop根据各机器空闲情况,调度一台(或者N台taskTracker机器,进行Map运算)
  3  taskTacker机器将程序和数据拷贝到自己机器上。
  4  taskTacker机器启动jvm,进行Map运算
  5  taskTacker机器运算完成,将数据存储在本机上,并通知JobTacker节点。
  6  JobTacker等待所有机器完成,调度一台空闲的机器,进行Reduce运算,并告知数据存储所在机器。
  7  进行Reduce运算的TaskTacker将数据通过RPC拷贝到自己机器上,同时将程序从HDFS中拷贝到自己机器中。
  8  启动JVM,加载程序,进行Reduce运算。
  9   运算完成,reduce运算的机器将数据存储在HDFS中,并通知JobTacker。
  10 JobTacker发现任务完成,通知客户端,你的事干完了。
  11   客户端通过访问HDFS,拿到最终运算数据。
  为什么Map中间数据会存储本机上而不是HDFS上呢,原因是因为中间的运算可能会失败,如果失败了也没有必要存储在HDFS上,JobTacker会选择另外一台机器完成任务即可。只有最终数据才是有价值的。
情况二:数据和节点在一起的情况
  真实的情况当然不是情况一,原因是因为: 移动运算比移动数据更经济. 在Hadoop中,往往同一台机器既是DataNode,也是TaskTraker。Hadoop在调度过程中,会优先调度数据所在的机器进行运算,这样数据就不会在机器之间Copy来Copy去,网络带宽就不会成为运算的瓶颈了。这个例子的示意图如下:
   DSC0001.png
  
  这张图结合上面的描述,我相信大家应该很容易就看懂了。那既然Hadoop的实际过程是情况二,我为什么要先描述情况一呢?原因有两点:
  1  情况一更容易理解。
  2  情况一更容易实现
  
  如何根据Hadoop的调度原理,写自己的的集群调度框架,这是我最近在思索和践行的一个事情,有兴趣的同学其实也可以自己写一个,大家多多交流~

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-85526-1-1.html 上篇帖子: hadoop lzo压缩 下篇帖子: hadoop使用指南
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表