设为首页 收藏本站
查看: 2764|回复: 0

[经验分享] [hadoop源码阅读][4]-org.apache.hadoop.io

[复制链接]

尚未签到

发表于 2015-7-12 09:42:18 | 显示全部楼层 |阅读模式
1.下面是主要的类层次图

DSC0000.jpeg
2.Writable和WritableComparable的子类们基本大同小异
DSC0001.png

  3.RawComparator和WritableComparator

举例如下,以下以text类型的comparator每个字符从高到低位比较,对于数字类型的字符串也是比较适用的


/** A WritableComparator optimized for Text keys. */
public static class Comparator extends WritableComparator
{
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)
{
int n1 = WritableUtils.decodeVIntSize(b1[s1]);
int n2 = WritableUtils.decodeVIntSize(b2[s2]);
return compareBytes(b1, s1 + n1, l1 - n1, b2, s2 + n2, l2 - n2);
}
}
4.Text类应用广泛,值得仔细看下

5.*InputBuffer和*OutputBuffer

6.Hadoop 数据类型与文件结构 Sequence, Map, Set, Array, BloomMap Files




1.Hadoop’s SequenceFile
DSC0002.png

  SequenceFile 是 Hadoop 的一个重要数据文件类型,它提供key-value的存储,但与传统key-value存储(比如hash表,btree)不同的是,它是appendonly的,于是你不能对已存在的key进行写操作。每一个key-value记录如下图,不仅保存了key,value值,也保存了他们的长度。
DSC0003.png

  SequenceFile 有三种压缩态:


  • Uncompressed – 未进行压缩的状态
  • Record Compressed - 对每一条记录的value值进行了压缩(文件头中包含上使用哪种压缩算法的信息)
  • Block-Compressed – 当数据量达到一定大小后,将停止写入进行整体压缩,整体压缩的方法是把所有的keylength,key,vlength,value 分别合在一起进行整体压缩
  文件的压缩态标识在文件开头的header数据中。
  在header数据之后是一个Metadata数据,他是简单的属性/值对,标识文件的一些其他信息。Metadata 在文件创建时就写好了,所以也是不能更改的。
DSC0004.png


2.MapFile, SetFile, ArrayFile 及 BloomMapFile
  SequenceFile 是Hadoop 的一个基础数据文件格式,后续讲的 MapFile, SetFile, ArrayFile 及 BloomMapFile 都是基于它来实现的。


  • MapFile – 一个key-value 对应的查找数据结构,由数据文件/data 和索引文件 /index 组成,数据文件中包含所有需要存储的key-value对,按key的顺序排列。索引文件包含一部分key值,用以指向数据文件的关键位置。
  • SetFile – 基于 MapFile 实现的,他只有key,value为不可变的数据。
  • ArrayFile – 也是基于 MapFile 实现,他就像我们使用的数组一样,key值为序列化的数字。
  • BloomMapFile – 他在 MapFile 的基础上增加了一个 /bloom 文件,包含的是二进制的过滤表,在每一次写操作完成时,会更新这个过滤表


7.值得提一下binary stream with zero-compressed encoding









  /**  
* Serializes a long to a binary stream with zero-compressed encoding.  
* For -112

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-85693-1-1.html 上篇帖子: Windows中的Eclipse连接Linux下的Hadoop进行开发 下篇帖子: 【Hadoop Diary】调试篇<二>
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表