设为首页 收藏本站
查看: 749|回复: 0

[经验分享] hadoop mapreduce 优化

[复制链接]

尚未签到

发表于 2015-7-13 08:35:48 | 显示全部楼层 |阅读模式
  mapreduce程序效率的瓶颈在于两点:
  1:计算机性能
  2:I/O操作优化
  优化无非包括时间性能和空间性能两个方面,存在一下常见的优化策略:
  1:输入的文件尽量采用大文件
  众多的小文件会导致map数量众多,每个新的map任务都会造成一些性能的损失。所以可以将一些小文件在进行mapreduce操作前进行一些预处理,整合成大文件,或者直接采用ConbinFileInputFormat来作为输入方式,此时hadoop会考虑节点和集群的位置信息,已决定将哪些文件打包到同一个单元之中。
  2:合理分配map和reduce任务的数量
  通过属性mapred.tasktracker.map.tasks.maximum和mapred.tasktracker.reduce.tasks.maximum分别可以配置单个节点上map任务和reduce任务的最大数量。
  3:压缩中间数据,减少I/O
  4:在map后先进行combine处理,减少I/O
  
  参考资料:《Hadoop 实战》--机械工业出版社

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-85953-1-1.html 上篇帖子: Hadoop学习笔记(一):MapReduce的输入格式 下篇帖子: 解决Eclipse中运行WordCount出现 java.lang.ClassNotFoundException: org.apache.hadoop.exam
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表