设为首页 收藏本站
查看: 444|回复: 0

[经验分享] Hadoop 下Kmeans分析

[复制链接]

尚未签到

发表于 2015-7-13 10:33:40 | 显示全部楼层 |阅读模式
Hadoop下Kmeans的实现



package org.apache.mahout.clustering.syntheticcontrol.kmeans;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.canopy.CanopyDriver;
import org.apache.mahout.clustering.conversion.InputDriver;
import org.apache.mahout.clustering.kmeans.KMeansDriver;
import org.apache.mahout.clustering.kmeans.RandomSeedGenerator;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure;
import org.apache.mahout.utils.clustering.ClusterDumper;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;

import java.util.Map;


public final class Job extends AbstractJob {
    private static final Logger log = LoggerFactory.getLogger(Job.class);
    private static final String DIRECTORY_CONTAINING_CONVERTED_INPUT = "data";

    private Job() {
    }

    public static void main(String[] args) throws Exception {
        if (args.length > 0) {
            log.info("Running with only user-supplied arguments");
            ToolRunner.run(new Configuration(), new Job(), args);
        } else {
            log.info("Running with default arguments");

            Path output = new Path("output");
            Configuration conf = new Configuration();
            HadoopUtil.delete(conf, output);
            new Job().run(conf, new Path("testdata"), output,
                new EuclideanDistanceMeasure(), 6, 0.5, 10);
        }
    }

    @Override
    public int run(String[] args)
        throws IOException, ClassNotFoundException, InstantiationException,
            IllegalAccessException, InterruptedException {
        addInputOption();
        addOutputOption();
        addOption(DefaultOptionCreator.distanceMeasureOption().create());
        addOption(DefaultOptionCreator.numClustersOption().create());
        addOption(DefaultOptionCreator.t1Option().create());
        addOption(DefaultOptionCreator.t2Option().create());
        addOption(DefaultOptionCreator.convergenceOption().create());
        addOption(DefaultOptionCreator.maxIterationsOption().create());
        addOption(DefaultOptionCreator.overwriteOption().create());

        Map argMap = parseArguments(args);

        if (argMap == null) {
            return -1;
        }

        Path input = getInputPath();
        Path output = getOutputPath();
        String measureClass = getOption(DefaultOptionCreator.DISTANCE_MEASURE_OPTION);

        if (measureClass == null) {
            measureClass = SquaredEuclideanDistanceMeasure.class.getName();
        }

        double convergenceDelta = Double.parseDouble(getOption(
                    DefaultOptionCreator.CONVERGENCE_DELTA_OPTION));
        int maxIterations = Integer.parseInt(getOption(
                    DefaultOptionCreator.MAX_ITERATIONS_OPTION));

        if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
            HadoopUtil.delete(getConf(), output);
        }

        ClassLoader ccl = Thread.currentThread().getContextClassLoader();
        Class cl = ccl.loadClass(measureClass);
        DistanceMeasure measure = (DistanceMeasure) cl.newInstance();

        if (hasOption(DefaultOptionCreator.NUM_CLUSTERS_OPTION)) {
            int k = Integer.parseInt(getOption(
                        DefaultOptionCreator.NUM_CLUSTERS_OPTION));
            run(getConf(), input, output, measure, k, convergenceDelta,
                maxIterations);
        } else {
            double t1 = Double.parseDouble(getOption(
                        DefaultOptionCreator.T1_OPTION));
            double t2 = Double.parseDouble(getOption(
                        DefaultOptionCreator.T2_OPTION));
            run(getConf(), input, output, measure, t1, t2, convergenceDelta,
                maxIterations);
        }

        return 0;
    }

    /**
     * Run the kmeans clustering job on an input dataset using the given the
     * number of clusters k and iteration parameters. All output data will be
     * written to the output directory, which will be initially deleted if it
     * exists. The clustered points will reside in the path
     * /clustered-points. By default, the job expects a file containing
     * equal length space delimited data that resides in a directory named
     * "testdata", and writes output to a directory named "output".
     *
     * @param conf
     *          the Configuration to use
     * @param input
     *          the String denoting the input directory path
     * @param output
     *          the String denoting the output directory path
     * @param measure
     *          the DistanceMeasure to use
     * @param k
     *          the number of clusters in Kmeans
     * @param convergenceDelta
     *          the double convergence criteria for iterations
     * @param maxIterations
     *          the int maximum number of iterations
     */
    public void run(Configuration conf, Path input, Path output,
        DistanceMeasure measure, int k, double convergenceDelta,
        int maxIterations)
        throws IOException, InterruptedException, ClassNotFoundException {
        Path directoryContainingConvertedInput = new Path(output,
                DIRECTORY_CONTAINING_CONVERTED_INPUT);
        log.info("Preparing Input");
        InputDriver.runJob(input, directoryContainingConvertedInput,
            "org.apache.mahout.math.RandomAccessSparseVector");
        log.info("Running random seed to get initial clusters");

        Path clusters = new Path(output, Cluster.INITIAL_CLUSTERS_DIR);
        clusters = RandomSeedGenerator.buildRandom(conf,
                directoryContainingConvertedInput, clusters, k, measure);
        log.info("Running KMeans");
        KMeansDriver.run(conf, directoryContainingConvertedInput, clusters,
            output, measure, convergenceDelta, maxIterations, true, false);

        // run ClusterDumper
        ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
                    output, maxIterations), new Path(output, "clusteredPoints"));
        clusterDumper.printClusters(null);
    }

    /**
     * Run the kmeans clustering job on an input dataset using the given distance
     * measure, t1, t2 and iteration parameters. All output data will be written
     * to the output directory, which will be initially deleted if it exists. The
     * clustered points will reside in the path /clustered-points. By
     * default, the job expects the a file containing synthetic_control.data as
     * obtained from
     * http://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series
     * resides in a directory named "testdata", and writes output to a directory
     * named "output".
     *
     * @param conf
     *          the Configuration to use
     * @param input
     *          the String denoting the input directory path
     * @param output
     *          the String denoting the output directory path
     * @param measure
     *          the DistanceMeasure to use
     * @param t1
     *          the canopy T1 threshold
     * @param t2
     *          the canopy T2 threshold
     * @param convergenceDelta
     *          the double convergence criteria for iterations
     * @param maxIterations
     *          the int maximum number of iterations
     * @throws IOException
     * @throws InterruptedException
     * @throws ClassNotFoundException
     * @throws IllegalAccessException
     * @throws InstantiationException
     */
    public void run(Configuration conf, Path input, Path output,
        DistanceMeasure measure, double t1, double t2, double convergenceDelta,
        int maxIterations)
        throws IOException, InterruptedException, ClassNotFoundException,
            InstantiationException, IllegalAccessException {
        Path directoryContainingConvertedInput = new Path(output,
                DIRECTORY_CONTAINING_CONVERTED_INPUT);
        log.info("Preparing Input");
        InputDriver.runJob(input, directoryContainingConvertedInput,
            "org.apache.mahout.math.RandomAccessSparseVector");
        log.info("Running Canopy to get initial clusters");
        CanopyDriver.run(conf, directoryContainingConvertedInput, output,
            measure, t1, t2, false, false);
        log.info("Running KMeans");
        KMeansDriver.run(conf, directoryContainingConvertedInput,
            new Path(output, Cluster.INITIAL_CLUSTERS_DIR), output, measure,
            convergenceDelta, maxIterations, true, false);

        // run ClusterDumper
        ClusterDumper clusterDumper = new ClusterDumper(finalClusterPath(conf,
                    output, maxIterations), new Path(output, "clusteredPoints"));
        clusterDumper.printClusters(null);
    }

    /**
     * Return the path to the final iteration's clusters
     */
    private static Path finalClusterPath(Configuration conf, Path output,
        int maxIterations) throws IOException {
        FileSystem fs = FileSystem.get(conf);

        for (int i = maxIterations; i >= 0; i--) {
            Path clusters = new Path(output, "clusters-" + i);

            if (fs.exists(clusters)) {
                return clusters;
            }
        }

        return null;
    }
}

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-86217-1-1.html 上篇帖子: Hama笔记:Unable to load native-hadoop library 和 Snappy native library not loaded 下篇帖子: 【转载】编译 Hadoop 1.0.2 eclipse插件
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表