设为首页 收藏本站
查看: 780|回复: 0

[经验分享] Hadoop 的常用组件一览

[复制链接]
累计签到:15 天
连续签到:1 天
发表于 2015-7-13 10:58:25 | 显示全部楼层 |阅读模式
  Apache Hadoop 项目有两个核心组件,被称为 Hadoop 分布式文件系统 (Hadoop Distributed File System, HDFS) 的文件存储,以及被称为 MapReduce 的编程框架。有一些支持项目充分利用了 HDFS 和 MapReduce。

  • HDFS: 如果您希望有 4000 多台电脑处理您的数据,那么最好将您的数据分发给 4000 多台电脑。HDFS 可以帮助您做到这一点。HDFS 有几个可以移动的部件。Datanodes 存储数据,Namenode 跟踪存储的位置。还有其他部件,但这些已经足以使您开始了。
  • MapReduce: 这是一个面向 Hadoop 的编程模型。有两个阶段,毫不意外,它们分别被称为 Map 和 Reduce。如果希望给您的朋友留下深刻的印象,那么告诉他们,Map 和 Reduce 阶段之间有一个随机排序。JobTracker 管理您的 MapReduce 作业的 4000 多个组件。TaskTracker 从 JobTracker 接受订单。如果您喜欢 Java,那么用 Java 编写代码。如果您喜欢 SQL 或 Java 以外的其他语言,您的运气仍然不错,您可以使用一个名为 Hadoop Streaming 的实用程序。
  • Hadoop Streaming:一个实用程序,在任何语言(C、Perl 和 Python、C++、Bash 等)中支持 MapReduce 代码。示例包括一个 Python 映射程序和一个 AWK 缩减程序。
  • Hive 和 Hue: 如果您喜欢 SQL,您会很高兴听到您可以编写 SQL,并使用 Hive 将其转换为一个 MapReduce 作业。不,您不会得到一个完整的 ANSI-SQL 环境,但您的确得到了 4000 个注释和多 PB 级的可扩展性。Hue 为您提供了一个基于浏览器的图形界面,可以完成您的 Hive 工作。
  • Pig: 一个执行 MapReduce 编码的更高层次的编程环境。Pig 语言被称为 Pig Latin。您可能会发现其命名约定有点不合常规,但是您会得到令人难以置信的性价比和高可用性。
  • Sqoop:在 Hadoop 和您最喜爱的关系数据库之间提供双向数据传输。
  • Oozie:管理 Hadoop 工作流。这并不能取代您的调度程序或 BPM 工具,但它在您的 Hadoop 作业中提供 if-then-else 分支和控制。
  • HBase:一个超级可扩展的键值存储。它的工作原理非常像持久的散列映射(对于 Python 爱好者,可以认为是词典)。尽管其名称是 HBase,但它并不是一个关系数据库。
  • FlumeNG:一个实时的加载程序,用来将数据流式传输到 Hadoop 中。它将数据存储在 HDFS 和 HBase 中。您会希望从 FlumeNG 开始,因为它对原始的水槽有所改进。
  • Whirr:面向 Hadoop 的云配置。您可以在短短几分钟内使用一个很短的配置文件启动一个集群。
  • Mahout:面向 Hadoop 的机器学习。用于预测分析和其他高级分析。
  • Fuse:让 HDFS 系统看起来就像一个普通的文件系统,所以您可以对 HDFS 数据使用 ls、rm、cd 和其他命令。
  • Zookeeper:用于管理集群的同步性。您不需要为 Zookeeper 做很多事情,但它在为您努力工作。如果您认为自己需要编写一个使用 Zookeeper 的程序,您要么非常非常聪明,并且可能是 Apache 项目的一个委员会,要么终将会有过得非常糟糕的一天。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-86247-1-1.html 上篇帖子: hadoop eclipse mapreduce开发环境配置 下篇帖子: Hadoop:The Definitive Guid 总结 Chapter 9 构建MapReduce集群
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表