设为首页 收藏本站
查看: 3935|回复: 0

[经验分享] 【转载】Map/Reduce hadoop 细节

[复制链接]

尚未签到

发表于 2015-7-14 08:01:40 | 显示全部楼层 |阅读模式
Map/Reduce hadoop 细节 DSC0000.jpg



原文:http://www.iyunv.com/duguguiyu/archive/2009/02/28/1400278.html
分布式计算(Map/Reduce)分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架。在Hadoop中,分布式文件系统,很大程度上,是为各种分布式计算需求所服务的。我们说分布式文件系统就是加了分布式的文件系统,类似的定义推广到分布式计算上,我们可以将其视为增加了分布式支持的计算函数。 从计算的角度上看,Map/Reduce框架接受各种格式的键值对文件作为输入,读取计算后,最终生成自定义格式的输出文件。而从分布式的角度上看,分布 式计算的输入文件往往规模巨大,且分布在多个机器上,单机计算完全不可支撑且效率低下,因此Map/Reduce框架需要提供一套机制,将此计算扩展到无限规模的机器集群上进行。依照这样的定义,我们对整个Map/Reduce的理解,也可以分别沿着这两个流程去看。。。在Map/Reduce框架中,每一次计算请求,被称为作业。在分布式计算Map/Reduce框架中,为了完成这个作业,它进行两步走的战略,首先是将其拆分成若干个Map任务, 分配到不同的机器上去执行,每一个Map任务拿输入文件的一部分作为自己的输入,经过一些计算,生成某种格式的中间文件,这种格式,与最终所需的文件格式 完全一致,但是仅仅包含一部分数据。因此,等到所有Map任务完成后,它会进入下一个步骤,用以合并这些中间文件获得最后的输出文件。此时,系统会生成若 干个Reduce任务,同样也是分配到不同的机器去执行,它的目标,就是将若干个Map任务生成的中间文件为汇总到最后的输出文件中去。当然,这个汇总不总会像1 + 1 = 2那么直接了当,这也就是Reduce任务的价值所在。经过如上步骤,最终,作业完成,所需的目标文件生成。整个算法的关键,就在于增加了一个中间文件生成的流程,大大提高了灵活性,使其分布式扩展性得到了保证。。。I. 术语对照和分布式文件系统一样,Google、Hadoop和....我,各执一种方式表述统一概念,为了保证其统一性,特有下表。。。文中翻译 Hadoop术语 Google术语 相关解释 作业 Job Job 用户的每一个计算请求,就称为一个作业。 作业服务器 JobTracker Master 用户提交作业的服务器,同时,它还负责各个作业任务的分配,管理所有的任务服务器。 任务服务器 TaskTracker Worker 任劳任怨的工蜂,负责执行具体的任务。 任务 Task Task 每一个作业,都需要拆分开了,交由多个服务器来完成,拆分出来的执行单位,就称为任务。 备份任务 Speculative Task Buckup Task 每一个任务,都有可能执行失败或者缓慢,为了降低为此付出的代价,系统会未雨绸缪的实现在另外的任务服务器上执行同样一个任务,这就是备份任务。 II. 基本架构与分布式文件系统类似,Map/Reduce的集群,也由三类服务器构成。其中作业服务器,在Hadoop中称为Job Tracker,在Google论文中称为Master。前者告诉我们,作业服务器是负责管理运行在此框架下所有作业的,后者告诉我们,它也是为各个作业分配任务的核心。与HDFS的主控服务器类似,它也是作为单点存在的,简化了负责的同步流程。具体的负责执行用户定义操作的,是任务服务器,每一个作业被拆分成很多的任务,包括Map任务Reduce任务等,任务是具体执行的基本单元,它们都需要分配到合适任务服务器上去执行,任务服务器一边执行一边向作业服务器汇报各个任务的状态,以此来帮助作业服务器了解作业执行的整体情况,分配新的任务等等。。。除了作业的管理者执行者,还需要有一个任务的提交者,这就是客户端。与分布式文件系统一样,客户端也不是一个单独的进程,而是一组API,用户需要自定义好自己需要的内容,经由客户端相关的代码,将作业及其相关内容和配置,提交到作业服务器去,并时刻监控执行的状况。。。同作为Hadoop的实现,与HDFS的通信机制相同,Hadoop Map/Reduce也是用了协议接口来进行服务器间的交流。实现者作为RPC服务器,调用者经由RPC的代理进行调用,如此,完成大部分的通信,具体服 务器的架构,和其中运行的各个协议状况,参见下图。从图中可以看到,与HDFS相比,相关的协议少了几个,客户端与任务服务器,任务服务器之间,都不再有 直接通信关系。这并不意味着客户端就不需要了解具体任务的执行状况,也不意味着,任务服务器之间不需要了解别家任务执行的情形,只不过,由于整个集群各机 器的联系比HDFS复杂的多,直接通信过于的难以维系,所以,都统一由作业服务器整理转发。另外,从这幅图可以看到,任务服务器不是一个人在战斗,它会像 孙悟空一样招出一群宝宝帮助其具体执行任务。这样做的好处,个人觉得,应该有安全性方面的考虑,毕竟,任务的代码是用户提交的,数据也是用户指定的,这质 量自然良莠不齐,万一碰上个搞破坏的,把整个任务服务器进程搞死了,就因小失大了。因此,放在单独的地盘进行,爱咋咋地,也算是权责明确了。。。与分布式文件系统相比,
的参数,通常它都有一个默认实现的类,用户如果不满意,则可自定义实现。。。III. 计算流程如果一切都按部就班的进行,那么整个作业的计算流程,应该是作业的提交 -> Map任务的分配和执行 -> Reduce任务的分配和执行 -> 作业的完成。而在每个任务的执行中,又包含输入的准备 -> 算法的执行 -> 输出的生成,三个子步骤。沿着这个流程,我们可以很快的整理清晰整个Map/Reduce框架下作业的执行。。。1、作业的提交一个作业,在提交之前,需要把所有应该配置的东西都配置好,因为一旦提交到了作业服务器上,就陷入了完全自动化的流程,用户除了观望,最多也就能起一个监督作用,惩治一些不好好工作的任务。。。基本上,用户在提交代码阶段,需要做的工作主要是这样的:首先,书写好所有自定的代码,最起码,需要有Map和Reduce的执行代码。在Hadoop中,Map需要派生自Mapper接口,Reduce需要派生自Reducer接口。这里都是用的泛型,用以支持不同的键值类型。这两个接口都仅有一个方法,一个是map,一个是reduce,这两个方法都直接受四个参数,前两个是输入的键和值相关的数据结构,第三个是作为输出相关的数据结构,最后一个,是一个Reporter类的实例,实现的时候可以利用它来统计一些计数。除了这两个接口,还有大量可以派生的接口,比如分割的Partitioner接口。。。然后,需要书写好主函数的代码,其中最主要的内容就是实例化一个JobConf类的对象,然后调用其丰富的setXXX接口,设定好所需的内容,包括输入输出的文件路径,Map和Reduce的类,甚至包括读取写入文件所需的格式支持类,等等。。。最后,调用JobClient的runJob方法,提交此JobConf对象。runJob方法会先行调用到JobSubmissionProtocol接口所定义的submitJob方法,将此作业,提交给作业服务器。接着,runJob开始循环,不停的调用JobSubmissionProtocol的getTaskCompletionEvents方法,获得TaskCompletionEvent类的对象实例,了解此作业各任务的执行状况。。。2、Map任务的分配当一个作业提交到了作业服务器上,作业服务器会生成若干个Map任务,每一个Map任务,负责将一部分的输入转换成格式与最终格式相同的中间文件。通常一个作业的输入都是基于分布式文件系统的文件(当然在单机环境下,文件系统单机的也可以...),因为,它可以很天然的和分布式的计算产生联系。而对于一个Map任务而言,它的输入往往是输入文件的一个数据块,或者是数据块的一部分,但通常,不跨数据块。因为,一旦跨了数据块,就可能涉及到多个服务器,带来了不必要的复杂性。当一个作业,从客户端提交到了作业服务器上,作业服务器会生成一个JobInProgress对象,作为与 之对应的标识,用于管理。作业被拆分成若干个Map任务后,会预先挂在作业服务器上的任务服务器拓扑树。这是依照分布式文件数据块的位置来划分的,比如一 个Map任务需要用某个数据块,这个数据块有三份备份,那么,在这三台服务器上都会挂上此任务,可以视为是一个预分配。关于任务管理和分配的大部分的真实功能和逻辑的实现,JobInProgress则依托JobInProgressListener和TaskScheduler的子类。TaskScheduler,顾名思义是用于任务分配的策略类(为了简化描述,用它代指所有TaskScheduler的子类...)。它会掌握好所有作业的任务信息,其assignTasks函数,接受一个TaskTrackerStatus作为参数,依照此任务服务器的状态和现有的任务状况,为其分配新的任务。而为了掌握所">

Map/Reduce框架的还有一个特点,就是可定制性强。文件系统中很多的算法, 都是很固定和直观的,不会由于所存储的内容不同而有太多的变化。而作为通用的计算框架,需要面对的问题则要复杂很多,在各种不同的问题、不同的输入、不同 的需求之间,很难有一种包治百病的药能够一招鲜吃遍天。作为Map/Reduce框架而言,一方面要尽可能的抽取出公共的一些需求,实现出来。更重要的, 是需要提供良好的可扩展机制,满足用户自定义各种算法的需求。Hadoop是由Java来实现的,因此通过反射来实现自定义的扩展,显得比较小菜一碟了。 在JobConf类中,定义了大量的接口,这基本上是Hadoop Map/Reduce框架所有可定制内容的一次集中展示。在JobConf中,有大量set接口接受一个Class

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-86364-1-1.html 上篇帖子: Hadoop的一些简单命令 下篇帖子: 下一代 Hadoop YARN :相比于MRv1,YARN的优势
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表