设为首页 收藏本站
查看: 927|回复: 0

[经验分享] hadoop新旧API的区别

[复制链接]

尚未签到

发表于 2015-7-15 10:03:57 | 显示全部楼层 |阅读模式


Hadoop的版本0.20.0包含有一个新的 Java MapReduce API,有时也称为"上下文对象"(context object),旨在使API在今后更容易扩展。
  1. 首先第一条,新旧API不兼容。所以,以前用旧API写的hadoop程序,如果旧API不可用之后需要重写,也就是上面我的程序需要重写,如果旧API不能用的话,如果真不能用,这个有点儿小遗憾!
2. 新的API倾向于使用抽象类,而不是接口,使用抽象类更容易扩展。例如,我们可以向一个抽象类中添加一个方法(用默认的实现)而不用修改类之前的实现方法。因此,在新的API中,Mapper和Reducer是抽象类。
3. 新的API广泛使用context object(上下文对象),并允许用户代码与MapReduce系统进行通信。例如,在新的API中,MapContext基本上充当着JobConf的OutputCollector和Reporter的角色。
4. 新的API同时支持"推"和"拉"式的迭代。在这两个新老API中,键/值记录对被推mapper中,但除此之外,新的API允许把记录从map()方法中拉出,这也适用于reducer。分批处理记录是应用"拉"式的一个例子。
5. 新的API统一了配置。旧的API有一个特殊的JobConf对象用于作业配置,这是一个对于Hadoop通常的Configuration对象的扩展。在新的API中,这种区别没有了,所有作业配置通过Configuration来完成。作业控制的执行由Job类来负责,而不是JobClient,并且JobConf和JobClient在新的API中已经荡然无存。这就是上面提到的,为什么只有在mapred中才有Jobconf的原因。
6. 输出文件的命名也略有不同,map的输出命名为part-m-nnnnn,而reduce的输出命名为part-r-nnnnn,这里nnnnn指的是从0开始的部分编号。
7.新的API 放在org.apache.hadoop.mapreduce 包(和子包)中。之前版本的API 依旧放在org.apache.hadoop.mapred中。



hadoop版本20以上时提交的作业,并不是说你用的20的系统,它就会run new mapper了。具体是用的oldAPI还是newAPI,得看提交任务的方式
    具体的说就是设置mapper时要用的Job.setMapperClass(xxx.class),而不是JobConf.setMapperClass(xxx.class)。前者是用mapreduce.map.class属性来承载mapper类,后者是用mapred.mapper.class属性来承载mapper类。
然后再看这段代码就知道了:


  •   private void setUseNewAPI() throws IOException {
  •     int numReduces = conf.getNumReduceTasks();
  •     String oldMapperClass = "mapred.mapper.class";
  •     String oldReduceClass = "mapred.reducer.class";
  •     conf.setBooleanIfUnset("mapred.mapper.new-api",
  •                  conf.get(oldMapperClass) == null);
如果没有用JobConf.setMapperClass(xxx.class)设置mapper类的话,mapred.mapper.class属性将是空,那conf.get(oldMapperClass) == null这句将为true,最后得到mapred.mapper.new-api = true。
  

  

  
  

  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-86838-1-1.html 上篇帖子: hadoop 上 安装 hive 下篇帖子: Hadoop集群的搭建与配置
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表