设为首页 收藏本站
查看: 1107|回复: 0

[经验分享] [zz]hadoop下运行多个SecondaryNameNode的配置

[复制链接]

尚未签到

发表于 2015-7-15 10:06:34 | 显示全部楼层 |阅读模式
  http://blog.iyunv.com/AE86_FC/article/details/5284181

  光从字面上来理解,很容易让一些初学者先入为主的认为:SecondaryNameNode(snn)就是NameNode(nn)的热备进程。其实不是。snn是HDFS架构中的一个组成部分,但是经常由于名字而被人误解它真正的用途,其实它真正的用途,是用来保存namenode中对HDFS metadata的信息的备份,并减少namenode重启的时间。对于hadoop进程中 ,要配置好并正确的使用 snn,还是需要做一些工作的。hadoop的默认配置中让 snn进程默认运行在了 namenode 的那台机器上,但是这样的话,如果这台机器出错,宕机,对恢复HDFS文件系统是很大的灾难,更好的方式是:将snn的进程配置在另外一台机器 上运行。
  在hadoop中,namenode负责对HDFS的metadata的持久化存储,并且处理来自客户端的对HDFS的各种操作的交互反馈。为了保证交互速度,HDFS文件系统的metadata是被load到namenode机器的内存中的,并且会将内存中的这些数据保存到磁盘进行持久化存储。为了保证这个持久化过程不会成为HDFS操作的瓶颈,hadoop采取的方式是:没有对任何一次的当前文件系统的snapshot进行持久化,对HDFS最近一段时间的操作list会被保存到namenode中的一个叫Editlog的文件中去。当重启namenode时,除了 load fsImage意外,还会对这个EditLog文件中 记录的HDFS操作进行replay,以恢复HDFS重启之前的最终状态。
  而SecondaryNameNode,会周期性的将EditLog中记录的对HDFS的操作合并到一个checkpoint中,然后清空EditLog。所以namenode的重启就会Load最新的一个checkpoint,并replay EditLog中 记录的hdfs操作,由于EditLog中记录的是从 上一次checkpoint以后到现在的操作列表,所以就会比较小。如果没有snn的这个周期性的合并过程,那么当每次重启namenode的时候,就会花费很长的时间。而这样周期性的合并就能减少重启的时间。同时也能保证HDFS系统的完整性。
  这就是SecondaryNameNode所做的事情。所以snn并不能分担namenode上对HDFS交互性操作的压力。尽管如此,当namenode机器宕机或者namenode进程出问题时,namenode的daemon进程可以通过人工的方式从snn上拷贝一份metadata来恢复HDFS文件系统。 至于为什么要将SNN进程运行在一台非NameNode的 机器上,这主要出于两点考虑:

  • 可扩展性: 创建一个新的HDFS的snapshot需要将namenode中load到内存的metadata信息全部拷贝一遍,这样的操作需要的内存就需要 和namenode占用的内存一样,由于分配给namenode进程的内存其实是对HDFS文件系统的限制,如果分布式文件系统非常的大,那么namenode那台机器的内存就可能会被namenode进程全部占据。
  • 容错性: 当snn创建一个checkpoint的时候,它会将checkpoint拷贝成metadata的几个拷贝。将这个操作运行到另外一台机器,还可以提供分布式文件系统的容错性。
配置将SecondaryNameNode运行在另外一台机器上

  HDFS的一次运行实例是通过在namenode机器上的$HADOOP_HOME/bin/start-dfs.sh( 或者start-all.sh ) 脚本来启动的。这个脚本会在运行该脚本的机器上启动 namenode进程,而slaves机器上都会启动DataNode进程,slave机器的列表保存在 conf/slaves文件中,一行一台机器。并且会在另外一台机器上启动一个snn进程,这台机器由 conf/masters文件指定。所以,这里需要严格注意, conf/masters 文件中指定的机器,并不是说jobtracker或者namenode进程要 运行在这台机器上,因为这些进程是运行在 launch bin/start-dfs.sh或者 bin/start-mapred.sh(start-all.sh)的机器上的。所以,masters这个文件名是非常的令人混淆的,应该叫做secondaries会比较合适。然后,通过以下步骤:

  • 将所有想要运行secondarynamenode进程的机器写到masters文件中,一行一台。
  • 修改在masters文件中配置了的机器上的conf/hadoop-site.xml文件,加上如下选项:
       dfs.http.address
       namenode.host.address :50070 >


  This second step is less obvious than the first and works around a subtlety in Hadoop’s data transfer architecture. Traffic between the DataNodes and the NameNode occurs over a custom RPC protocol; the port for this protocol is specified in the URI supplied to thefs.default.name property. The NameNode also runs a Jetty web servlet engine on port 50070. This servlet engine generates status pages detailing the NameNode’s operation. It also communicates with the SecondaryNameNode. The SecondaryNameNode actually performs an HTTP GET request to retrieve the current FSImage (checkpoint) and EditLog from the NameNode; it uses HTTP POST to upload the new checkpoint back to the NameNode. Theconf/hadoop-default.xml file setsdfs.http.address to0.0.0.0:50070 ; the NameNodelistens on this host mask and port (by default, all inbound interfaces on port 50070), and the SecondaryNameNode attempts to use the same value as an address to connect to. It special-cases 0.0.0.0 as “localhost.” Running the SecondaryNameNode on a different machine requires telling that machine where to reach the NameNode.
  Usually this setting could be placed in the hadoop-site.xml file used by all daemons on all nodes. In an environment such as Amazon EC2, though, where a node is known by multiple addresses (one public IP and one private IP), it is preferable to have the SecondaryNameNode connect to the NameNode over the private (unmetered bandwidth) IP address, while you connect to the public IP address for status pages. Specifyingdfs.http.address as anything other than 0.0.0.0 on the NameNode will cause it to bind to only one address instead of all available ones.  In conclusion, larger deployments of HDFS will require a remote SecondaryNameNode, but doing so requires a subtle configuration tweak, to ensure that the SecondaryNameNode can communicate back to the remote NameNode.

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-86841-1-1.html 上篇帖子: Hadoop 2.0 Yarn代码:ResourcesManager端代码_RM端各模块服务的启动 下篇帖子: hadoop:java.lang.outofmemoryerror
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表