设为首页 收藏本站
查看: 2174|回复: 0

[经验分享] Apache Spark源码走读之19

[复制链接]

尚未签到

发表于 2015-7-31 07:57:36 | 显示全部楼层 |阅读模式
  欢迎转载,转载请注明出处,徽沪一郎。

概要
  本文主要讲述在standalone cluster部署模式下,Spark Application在整个运行期间,资源(主要是cpu core和内存)的申请与释放。
  构成Standalone cluster部署模式的四大组成部件如下图所示,分别为Master, worker, executor和driver,它们各自运行于独立的JVM进程。
http://www.iyunv.com/hseagle/p/
  从资源管理的角度来说


  • Master  掌管整个cluster的资源,主要是指cpu core和memory,但Master自身并不拥有这些资源
  • Worker 计算资源的实际贡献者,须向Master汇报自身拥有多少cpu core和memory, 在master的指示下负责启动executor
  • Executor 执行真正计算的苦力,由master来决定该进程拥有的core和memory数值
  • Driver 资源的实际占用者,Driver会提交一到多个job,每个job在拆分成多个task之后,会分发到各个executor真正的执行
  这些内容在standalone cluster模式下的容错性分析中也有所涉及,今天主要讲一下资源在分配之后不同场景下是如何被顺利回收的。

资源上报汇聚过程
  standalone cluster下最主要的当然是master,master必须先于worker和driver程序正常启动。
  当master顺利启动完毕,可以开始worker的启动工作,worker在启动的时候需要向master发起注册,在注册消息中带有本worker节点的cpu core和内存。
  调用顺序如下preStart->registerWithMaster->tryRegisterAllMasters
  看一看tryRegisterAllMasters的代码

def tryRegisterAllMasters() {
for (masterUrl  {
totalMb = 2*1024
System.out.println("Failed to get total physical memory. Using " + totalMb + " MB")
}
}
// Leave out 1 GB for the operating system, but don't return a negative memory size
math.max(totalMb - 1024, 512)
}

  如果已经在配置文件中为显示指定了每个worker的core和memory,则使用配置文件中的值,具体配置参数为SPARK_WORKER_CORESSPARK_WORKER_MEMORY
  Master在收到RegisterWork消息之后,根据上报的信息为每一个worker创建相应的WorkerInfo.

    case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>
{
logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
workerHost, workerPort, cores, Utils.megabytesToString(memory)))
if (state == RecoveryState.STANDBY) {
// ignore, don't send response
} else if (idToWorker.contains(id)) {
sender ! RegisterWorkerFailed("Duplicate worker ID")
} else {
val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
sender, workerUiPort, publicAddress)
if (registerWorker(worker)) {
persistenceEngine.addWorker(worker)
sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
schedule()
} else {
val workerAddress = worker.actor.path.address
logWarning("Worker registration failed. Attempted to re-register worker at same " +
"address: " + workerAddress)
sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: "
+ workerAddress)
}
}

资源分配过程
  如果在worker注册上来的时候,已经有Driver Application注册上来,那么就需要将原先处于未分配资源状态的driver application启动相应的executor。
  WorkerInfo在schedule函数中会被使用到,schedule函数处理逻辑概述如下


  • 查看目前存活的worker中剩余的内存是否能够满足application每个task的最低需求,如果是则将该worker加入到可分配资源的队列
  • 根据分发策略,如果是决定将工作平摊到每个worker,则每次在一个worker上占用一个core,直到所有可分配资源耗尽或已经满足driver的需求
  • 如果分发策略是分发到尽可能少的worker,则一次占用尽worker上的可分配core,直到driver的core需求得到满足
  • 根据步骤2或3的结果在每个worker上添加相应的executor,处理函数是addExecutor
  为了叙述简单,现仅列出平摊到各个worker的分配处理过程

      for (worker > workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) {
for (app  0) {
if (canUse(app, worker)) {
val coresToUse = math.min(worker.coresFree, app.coresLeft)
if (coresToUse > 0) {
val exec = app.addExecutor(worker, coresToUse)
launchExecutor(worker, exec)
app.state = ApplicationState.RUNNING
}
}
}
}

  launchExecutor主要负责两件事情


  • 记录下新添加的executor使用掉的cpu core和内存数目,记录过程发生在worker.addExecutor
  • 向worker发送LaunchExecutor指令

  def launchExecutor(worker: WorkerInfo, exec: ExecutorInfo) {
logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
worker.addExecutor(exec)
worker.actor ! LaunchExecutor(masterUrl,
exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory)
exec.application.driver ! ExecutorAdded(
exec.id, worker.id, worker.hostPort, exec.cores, exec.memory)
}

  worker在收到LaunchExecutor指令后,也会记一笔账,将要使用掉的cpu core和memory从可用资源中减去,然后使用ExecutorRunner来负责生成Executor进程,注意Executor运行于独立的进程。代码如下

case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
if (masterUrl != activeMasterUrl) {
logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
} else {
try {
logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
val manager = new ExecutorRunner(appId, execId, appDesc, cores_, memory_,
self, workerId, host,
appDesc.sparkHome.map(userSparkHome => new File(userSparkHome)).getOrElse(sparkHome),
workDir, akkaUrl, conf, ExecutorState.RUNNING)
executors(appId + "/" + execId) = manager
manager.start()
coresUsed += cores_
memoryUsed += memory_
masterLock.synchronized {
master ! ExecutorStateChanged(appId, execId, manager.state, None, None)
}
} catch {
case e: Exception => {
logError("Failed to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
if (executors.contains(appId + "/" + execId)) {
executors(appId + "/" + execId).kill()
executors -= appId + "/" + execId
}
masterLock.synchronized {
master ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, None, None)
}
}
}
}

  在资源分配过程中需要注意到的是如果有多个Driver Application处于等待状态,资源分配的原则是FIFO,先到先得。

资源回收过程
  worker中上报的资源最终被driver application中提交的job task所占用,如果application结束(包括正常和异常退出),application所占用的资源就应该被顺利回收,即将占用的资源重新归入可分配资源行列。
  现在的问题转换成Master和Executor如何知道Driver Application已经退出了呢?
  有两种不同的处理方式,一种是先道别后离开,一种是不告而别。现分别阐述。
  何为先道别后离开,即driver application显式的通知master和executor,任务已经完成了,我要bye了。应用程序显式的调用SparkContext.stop

  def stop() {
postApplicationEnd()
ui.stop()
// Do this only if not stopped already - best case effort.
// prevent NPE if stopped more than once.
val dagSchedulerCopy = dagScheduler
dagScheduler = null
if (dagSchedulerCopy != null) {
metadataCleaner.cancel()
cleaner.foreach(_.stop())
dagSchedulerCopy.stop()
taskScheduler = null
// TODO: Cache.stop()?
env.stop()
SparkEnv.set(null)
ShuffleMapTask.clearCache()
ResultTask.clearCache()
listenerBus.stop()
eventLogger.foreach(_.stop())
logInfo("Successfully stopped SparkContext")
} else {
logInfo("SparkContext already stopped")
}
}

  显式调用SparkContext.stop的一个主要功能是会去显式的停止Executor,具体下达StopExecutor指令的代码见于CoarseGrainedSchedulerBackend中的stop函数

  override def stop() {
stopExecutors()
try {
if (driverActor != null) {
val future = driverActor.ask(StopDriver)(timeout)
Await.ready(future, timeout)
}
} catch {
case e: Exception =>
throw new SparkException("Error stopping standalone scheduler's driver actor", e)
}
}

  那么Master又是如何知道Driver Application退出的呢?这要归功于Akka的通讯机制了,当相互通讯的任意一方异常退出,另一方都会收到DisassociatedEvent, Master也就是在这个消息处理中移除已经停止的Driver Application。

    case DisassociatedEvent(_, address, _) => {
// The disconnected client could've been either a worker or an app; remove whichever it was
logInfo(s"$address got disassociated, removing it.")
addressToWorker.get(address).foreach(removeWorker)
addressToApp.get(address).foreach(finishApplication)
if (state == RecoveryState.RECOVERING && canCompleteRecovery) { completeRecovery() }
}

  不告而别的方式下Executor是如何知道自己所服务的application已经顺利完成使命了呢?道理和master的一样,还是通过DisassociatedEvent来感知。详见CoarseGrainedExecutorBackend中的receive函数

  case x: DisassociatedEvent =>
logError(s"Driver $x disassociated! Shutting down.")
System.exit(1)

异常情况下的资源回收
  由于Master和Worker之间的心跳机制,如果worker异常退出, Master会由心跳机制感知到其消亡,进而将其上报的资源移除。
  Executor异常退出时,Worker中的监控线程ExecutorRunner会立即感知,进而上报给Master,Master会回收资源,并重新要求worker启动executor。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-92441-1-1.html 上篇帖子: Apache xml-rpc 下篇帖子: Apache Solrj EmbeddedSolrServer使用
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表