/**
* The HttpConnector with which this processor is associated.
*/
private HttpConnector connector = null;
/**
* The HTTP request object we will pass to our associated container.
*/
private HttpRequestImpl request = null;
/**
* The HTTP response object we will pass to our associated container.
*/
private HttpResponseImpl response = null;
/**
* Construct a new HttpProcessor associated with the specified connector.
*
* @param connector HttpConnector that owns this processor
* @param id Identifier of this HttpProcessor (unique per connector)
*/
public HttpProcessor(HttpConnector connector, int id) {
super();
this.connector = connector;
this.debug = connector.getDebug();
this.id = id;
this.proxyName = connector.getProxyName();
this.proxyPort = connector.getProxyPort();
this.request = (HttpRequestImpl) connector.createRequest();
this.response = (HttpResponseImpl) connector.createResponse();
this.serverPort = connector.getPort();
this.threadName =
"HttpProcessor[" + connector.getPort() + "][" + id + "]";
}
构造函数用于初始化成员变量HttpConnector connector = null、HttpRequestImpl request = null、HttpResponseImpl response = null等
当调用它的start()方法时,用于启动处理器线程
/**
* Start the background thread we will use for request processing.
*
* @exception LifecycleException if a fatal startup error occurs
*/
public void start() throws LifecycleException {
if (started)
throw new LifecycleException
(sm.getString("httpProcessor.alreadyStarted"));
lifecycle.fireLifecycleEvent(START_EVENT, null);
started = true;
threadStart();
}
调用threadStart()方法
/**
* Start the background processing thread.
*/
private void threadStart() {
log(sm.getString("httpProcessor.starting"));
thread = new Thread(this, threadName);
thread.setDaemon(true);
thread.start();
if (debug >= 1)
log(" Background thread has been started");
}
即启动处理器线程,下面是run()方法
/**
* The background thread that listens for incoming TCP/IP connections and
* hands them off to an appropriate processor.
*/
public void run() {
// Process requests until we receive a shutdown signal
while (!stopped) {
// Wait for the next socket to be assigned
Socket socket = await();
if (socket == null)
continue;
// Process the request from this socket
try {
process(socket);
} catch (Throwable t) {
log("process.invoke", t);
}
// Finish up this request
connector.recycle(this);
}
// Tell threadStop() we have shut ourselves down successfully
synchronized (threadSync) {
threadSync.notifyAll();
}
}
下面关键是分析await()方法与assign()方法是怎么同步的了,这里可以理解为经典的生产者与消费者模型
我们先来看assign()方法
/**
* Process an incoming TCP/IP connection on the specified socket. Any
* exception that occurs during processing must be logged and swallowed.
* <b>NOTE</b>: This method is called from our Connector's thread. We
* must assign it to our own thread so that multiple simultaneous
* requests can be handled.
*
* @param socket TCP socket to process
*/
synchronized void assign(Socket socket) {
// Wait for the Processor to get the previous Socket
while (available) {
try {
wait();
} catch (InterruptedException e) {
}
}
// Store the newly available Socket and notify our thread
this.socket = socket;
available = true;
notifyAll();
if ((debug >= 1) && (socket != null))
log(" An incoming request is being assigned");
}
成员变量默认为boolean available = false
下面是await()方法
/**
* Await a newly assigned Socket from our Connector, or <code>null</code>
* if we are supposed to shut down.
*/
private synchronized Socket await() {
// Wait for the Connector to provide a new Socket
while (!available) {
try {
wait();
} catch (InterruptedException e) {
}
}
// Notify the Connector that we have received this Socket
Socket socket = this.socket;
available = false;
notifyAll();
if ((debug >= 1) && (socket != null))
log(" The incoming request has been awaited");
return (socket);
}
显然这里是采用notifyAll()方法与wait()方法相同通信,当await()方法执行notifyAll()并返回socket后,assign()方法又可以继续接收请求socket对象了
await()方法里面采用的是局部变量,为了不占用成员变量引用(Socket socket = null),返回的socket对象供处理器线程进行处理,又要回到run()方法了
Socket socket = await()这里也是采用了局部变量,与await()方法里面采用局部变量同样的原因
获取socket实例后,调用process()方法进行处理,处理完毕后将处理器对象重新入栈,最后是如果收到停止处理器线程命令,则事件通知可以停止线程了
下面关键是process()方法,这个方法有点长
/**
* Process an incoming HTTP request on the Socket that has been assigned
* to this Processor. Any exceptions that occur during processing must be
* swallowed and dealt with.
*
* @param socket The socket on which we are connected to the client
*/
private void process(Socket socket) {
boolean ok = true;
boolean finishResponse = true;
SocketInputStream input = null;
OutputStream output = null;
// Construct and initialize the objects we will need
try {
input = new SocketInputStream(socket.getInputStream(),
connector.getBufferSize());
} catch (Exception e) {
log("process.create", e);
ok = false;
}
keepAlive = true;
while (!stopped && ok && keepAlive) {
finishResponse = true;
try {
request.setStream(input);
request.setResponse(response);
output = socket.getOutputStream();
response.setStream(output);
response.setRequest(request);
((HttpServletResponse) response.getResponse()).setHeader
("Server", SERVER_INFO);
} catch (Exception e) {
log("process.create", e);
ok = false;
}
// Parse the incoming request
try {
if (ok) {
parseConnection(socket);
parseRequest(input, output);
if (!request.getRequest().getProtocol()
.startsWith("HTTP/0"))
parseHeaders(input);
if (http11) {
// Sending a request acknowledge back to the client if
// requested.
ackRequest(output);
// If the protocol is HTTP/1.1, chunking is allowed.
if (connector.isChunkingAllowed())
response.setAllowChunking(true);
}
}
} catch (EOFException e) {
// It's very likely to be a socket disconnect on either the
// client or the server
ok = false;
finishResponse = false;
} catch (ServletException e) {
ok = false;
try {
((HttpServletResponse) response.getResponse())
.sendError(HttpServletResponse.SC_BAD_REQUEST);
} catch (Exception f) {
;
}
} catch (InterruptedIOException e) {
if (debug > 1) {
try {
log("process.parse", e);
((HttpServletResponse) response.getResponse())
.sendError(HttpServletResponse.SC_BAD_REQUEST);
} catch (Exception f) {
;
}
}
ok = false;
} catch (Exception e) {
try {
log("process.parse", e);
((HttpServletResponse) response.getResponse()).sendError
(HttpServletResponse.SC_BAD_REQUEST);
} catch (Exception f) {
;
}
ok = false;
}
// Ask our Container to process this request
try {
((HttpServletResponse) response).setHeader
("Date", FastHttpDateFormat.getCurrentDate());
if (ok) {
connector.getContainer().invoke(request, response);
}
} catch (ServletException e) {
log("process.invoke", e);
try {
((HttpServletResponse) response.getResponse()).sendError
(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
} catch (Exception f) {
;
}
ok = false;
} catch (InterruptedIOException e) {
ok = false;
} catch (Throwable e) {
log("process.invoke", e);
try {
((HttpServletResponse) response.getResponse()).sendError
(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
} catch (Exception f) {
;
}
ok = false;
}
// Finish up the handling of the request
if (finishResponse) {
try {
response.finishResponse();
} catch (IOException e) {
ok = false;
} catch (Throwable e) {
log("process.invoke", e);
ok = false;
}
try {
request.finishRequest();
} catch (IOException e) {
ok = false;
} catch (Throwable e) {
log("process.invoke", e);
ok = false;
}
try {
if (output != null)
output.flush();
} catch (IOException e) {
ok = false;
}
}
// We have to check if the connection closure has been requested
// by the application or the response stream (in case of HTTP/1.0
// and keep-alive).
if ( "close".equals(response.getHeader("Connection")) ) {
keepAlive = false;
}
// End of request processing
status = Constants.PROCESSOR_IDLE;
// Recycling the request and the response objects
request.recycle();
response.recycle();
}
try {
shutdownInput(input);
socket.close();
} catch (IOException e) {
;
} catch (Throwable e) {
log("process.invoke", e);
}
socket = null;
}
上面方法中,首先根据参数socket的输入流与输出流初始化request对象与response对象,接着是解析输入流并填充request对象和response对象,接下来调用容器对象的void invoke(Request request, Response response)方法具体进行处理
接下来清理并回收request对象和response对象
注:keepAlive表示是否是持久连接
最后是检查输入流是否有未读完的字节并跳过这些字节和关闭socket实例。
下面是一个简单的容器,实现了org.apache.catalina.Container接口,关键代码如下