设为首页 收藏本站
查看: 1248|回复: 0

【hadoop学习笔记】4.eclipse运行wordcount实例

[复制链接]

尚未签到

发表于 2015-11-11 12:04:59 | 显示全部楼层 |阅读模式

新建一个hadoop工程,如图


DSC0000.jpg


建一个运行wordcount的类,先不管他什么意思,代码如下

/**
* Project: hadoop
*
* File Created at 2012-5-21
* $Id$
*/
package seee.you.app;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
if (args.length != 2) {
System.err.println(&quot;Usage: wordcount  &quot;);
System.exit(2);
}
Job job = new Job(conf, &quot;word count&quot;);
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(IntSumReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}





这时候右键run on hadoop




这时候不幸的是,报错了,错误信息如下:


12/05/23 19:38:51 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
12/05/23 19:38:51 ERROR security.UserGroupInformation: PriviledgedActionException as:yongkang.qiyk cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-yongkang\mapred\staging\yongkang.qiyk-1840800210\.staging to 0700
Exception in thread &quot;main&quot; java.io.IOException: Failed to set permissions of path: \tmp\hadoop-yongkang\mapred\staging\yongkang.qiyk-1840800210\.staging to 0700
at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:682)
at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:655)
at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509)
at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344)
at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189)
at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:856)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:850)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093)
at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:850)
at org.apache.hadoop.mapreduce.Job.submit(Job.java:500)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:530)
at seee.you.app.WordCount.main(WordCount.java:80)







错误信息很明显了,at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:682) 这一行的方法报错了




网上查到这是由于0.20.203.0以后的版本的权限认证引起的,只有去掉才行


修改hadoop源代码,去除权限认证,修改FileUtil.java的checkReturnValue方法,如下:


private static void checkReturnValue(boolean rv, File p,
FsPermission permission
) throws IOException {
// if (!rv) {
// throw new IOException(&quot;Failed to set permissions of path: &quot; + p +
// &quot; to &quot; +
// String.format(&quot;%04o&quot;, permission.toShort()));
// }
}







去掉这一行后,需要重新编译打包下,打包成功之后,可以将hadoop-core-1.0.2.jar拷贝到hadoop根目录下,eclipse中重新导入下即可(我用的这个1.0.2是从网上下载的修改好的,比较省事)




这时重新运行下实例,运行实例需要配置下arguments参数,我的配置如下:


DSC0001.jpg




run一下,结果如下,说明已经成功了


12/05/28 21:16:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
12/05/28 21:16:29 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
****hdfs://10.16.110.7:9000/user/yongkang/test-in
12/05/28 21:16:29 INFO input.FileInputFormat: Total input paths to process : 0
12/05/28 21:16:30 INFO mapred.JobClient: Running job: job_local_0001
12/05/28 21:16:30 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
12/05/28 21:16:30 INFO mapred.LocalJobRunner:
12/05/28 21:16:30 INFO mapred.Merger: Merging 0 sorted segments
12/05/28 21:16:30 INFO mapred.Merger: Down to the last merge-pass, with 0 segments left of total size: 0 bytes
12/05/28 21:16:30 INFO mapred.LocalJobRunner:
12/05/28 21:16:30 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
12/05/28 21:16:30 INFO mapred.LocalJobRunner:
12/05/28 21:16:30 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
12/05/28 21:16:30 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to /user/yongkang/test-out6
12/05/28 21:16:31 INFO mapred.JobClient:  map 0% reduce 0%
12/05/28 21:16:33 INFO mapred.LocalJobRunner: reduce > reduce
12/05/28 21:16:33 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
12/05/28 21:16:34 INFO mapred.JobClient:  map 0% reduce 100%
12/05/28 21:16:34 INFO mapred.JobClient: Job complete: job_local_0001
12/05/28 21:16:34 INFO mapred.JobClient: Counters: 10
12/05/28 21:16:34 INFO mapred.JobClient:   File Output Format Counters
12/05/28 21:16:34 INFO mapred.JobClient:     Bytes Written=0
12/05/28 21:16:34 INFO mapred.JobClient:   FileSystemCounters
12/05/28 21:16:34 INFO mapred.JobClient:     FILE_BYTES_READ=8604
12/05/28 21:16:34 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=51882
12/05/28 21:16:34 INFO mapred.JobClient:   Map-Reduce Framework
12/05/28 21:16:34 INFO mapred.JobClient:     Reduce input groups=0
12/05/28 21:16:34 INFO mapred.JobClient:     Combine output records=0
12/05/28 21:16:34 INFO mapred.JobClient:     Reduce shuffle bytes=0
12/05/28 21:16:34 INFO mapred.JobClient:     Reduce output records=0
12/05/28 21:16:34 INFO mapred.JobClient:     Spilled Records=0
12/05/28 21:16:34 INFO mapred.JobClient:     Total committed heap usage (bytes)=5177344
12/05/28 21:16:34 INFO mapred.JobClient:     Reduce input records=0







版权声明:本文为博主原创文章,未经博主允许不得转载。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-137874-1-1.html 上篇帖子: hadoop配置文件详解、安装及相关操作 下篇帖子: ubuntu下hadoop安装
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表