设为首页 收藏本站
查看: 1348|回复: 0

[经验分享] python模拟随机游走

[复制链接]

尚未签到

发表于 2015-12-2 14:09:33 | 显示全部楼层 |阅读模式
  
  在python中,可以利用数组操作来模拟随机游走。
  
  下面是一个单一的200步随机游走的例子,从0开始,步长为1和-1,且以相等的概率出现。纯Python方式实现,使用了内建的 random 模块:



# 随机游走
import matplotlib.pyplot as plt
import random

position = 0
walk = [position]
steps = 200
for i in range(steps):
step = 1 if random.randint(0, 1) else -1
position += step
walk.append(position)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(walk)
plt.show()
DSC0000.png
  
  
  第二种方式:简单的把随机步长累积起来并且可以可以使用一个数组表达式来计算。因此,我用 np.random 模块去200次硬币翻转,设置它们为1和-1,并计算累计和:



# 随机游走
import matplotlib.pyplot as plt
import numpy as np
nsteps = 200
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(walk)
plt.show()
DSC0001.png
  
  

一次模拟多个随机游走



# 随机游走
import matplotlib.pyplot as plt
import numpy as np
nwalks = 5
nsteps = 200
draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1
steps = np.where(draws > 0, 1, -1)
walks = steps.cumsum(1)
fig = plt.figure()
ax = fig.add_subplot(111)
for i in range(nwalks):
ax.plot(walks)
plt.show()
DSC0002.png
  
  
  
  当然,还可以大胆的试验其它的分布的步长,而不是相等大小的硬币翻转。你只需要使用一个不同的随机数生成函数,如 normal 来产生相同均值和标准偏差的正态分布:



steps = np.random.normal(loc=0, scale=0.25, size=(nwalks, nsteps))
DSC0003.png
  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.yunweiku.com/thread-146391-1-1.html 上篇帖子: Python学习 Day 7 面向对象 类和实例 访问限制 下篇帖子: Python单元测试——深入理解unittest
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表